Geographic information systems

Geographic information systems

geographic information system (GIS) is a system designed to capture, store, manipulate, analyze, manage, and present spatial or geographic data.
GIS applications are tools that allow users to create interactive queries (user-created searches), analyze spatial information, edit data in maps, and present the results of all these operations.
GIS (more commonly GIScience) sometimes refers to geographic information science (GIScience), the science underlying geographic concepts, applications, and systems.
GIS can refer to a number of different technologies, processes, and methods. It is attached to many operations and has many applications related to engineering, planning, management, transport/logistics, insurance, telecommunications, and business
For that reason, GIS and location intelligence applications can be the foundation for many location-enabled services that rely on analysis and visualization.
GIS can relate unrelated information by using location as the key index variable. Locations or extents in the Earth space–time may be recorded as dates/times of occurrence, and x, y, and z coordinates representing, longitude, latitude, and elevation, respectively. All Earth-based spatial–temporal location and extent references should be relatable to one another and ultimately to a “real” physical location or extent. This key characteristic of GIS has begun to open new avenues of scientific inquiry.

 

 

people-1

GIS

History of development

The first known use of the term “geographic information system” was by Roger Tomlinson in the year 1968 in his paper “A Geographic Information System for Regional Planning”.

Tomlinson is also acknowledged as the “father of GIS”

 

 

 

design-tech-hero-banner

E. W. Gilbert’s version (1958) of John Snow’s 1855 map of the Soho cholera outbreak showing the clusters of cholera cases in the London epidemic of 1854

Previously, one of the first applications of spatial analysis in epidemiology is the 1832 “Rapport sur la marche et les effets du choléra dans Paris et le département de la Seine“.

The French geographer Charles Picquet represented the 48 districts of the city of Paris by halftone color gradient according to the number of deaths by cholera per 1,000 inhabitants.

The year 1960 saw the development of the world’s first true operational GIS in Ottawa, Ontario, Canada, by the federal Department of Forestry and Rural Development. Developed by Dr. Roger Tomlinson, it was called the Canada Geographic Information System (CGIS) and was used to store, analyze, and manipulate data collected for the Canada Land Inventory – an effort to determine the land capability for rural Canada by mapping information about soils, agriculture, recreation, wildlife, waterfowl, forestry and land use at a scale of 1:50,000. A rating classification factor was also added to permit analysis.

In 1986, Mapping Display and Analysis System (MIDAS), the first desktop GIS product was released for the DOS operating system. This was renamed in 1990 to MapInfo for Windows when it was ported to the Microsoft Windows platform. This began the process of moving GIS from the research department into the business environment.

 

By the end of the 20th century, the rapid growth in various systems had been consolidated and standardized on relatively few platforms and users were beginning to explore viewing GIS data over the Internet, requiring data format and transfer standards. More recently, a growing number of free, open-source GIS packages run on a range of operating systems and can be customized to perform specific tasks. Increasingly geospaial data and mapping applications are being made available via the World Wide Web (see List of GIS software § GIS as a service).